Friday, September 30, 2022
HomeNanotechnologySteel–natural frameworks and covalent natural frameworks as disruptive membrane supplies for energy-efficient...

Steel–natural frameworks and covalent natural frameworks as disruptive membrane supplies for energy-efficient gasoline separation


  • Scholl, D. S. & Energetic, R. P. Seven chemical separations to alter the world. Nature 532, 435–437 (2016).

    Article 

    Google Scholar
     

  • Baker, R. W. & Low, B. T. Fuel separation membrane supplies: a perspective. Macromolecules 47, 6999–7013 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally secure and extremely porous metallic–natural framework. Nature 402, 276–279 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Chui, S. S.-Y. et al. A chemically functionalizable nanoporous materials [Cu3(TMA)2(H2O)3]. Science 283, 1148–1150 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Côté, A. P. et al. Porous, crystalline, covalent natural frameworks. Science 310, 1166–1170 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Arnold, M. et al. Oriented crystallization on helps and anisotropic mass transport of the metallic–natural framework manganese formate. Eur. J. Inorg. Chem. 60–64 (2007).

  • Gascon, J., Aguado, S. & Kapteijn, F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous Mesoporous Mater. 113, 132–138 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Synthesis of steady MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater. 118, 296–301 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Bux, H. et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 131, 16000–16001 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Robeson, L. M. The higher certain revisited. J. Membr. Sci. 320, 390–400 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Li, Y. S. et al. Molecular sieve membrane: supported metallic–natural framework with excessive hydrogen selectivity. Angew. Chem. Int. Ed. 122, 558–561 (2010).

    Article 

    Google Scholar
     

  • Huang, A., Dou, W. & Caro, J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity by means of covalent functionalization. J. Am. Chem. Soc. 132, 15562–15564 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Keskin, S. & Sholl, D. S. Screening metallic−natural framework supplies for membrane-based methane/carbon dioxide separations. J. Phys. Chem. C 111, 14055–14059 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Krishna, R. & van Baten, J. M. In silico screening of metallic–natural frameworks in separation functions. Phys. Chem. Chem. Phys. 13, 10593–10616 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Bae, T. H. et al. A excessive‐efficiency gasoline‐separation membrane containing submicrometer‐sized metallic–natural framework crystals. Angew. Chem. Int. Ed. 122, 10059–10062 (2010).

    Article 

    Google Scholar
     

  • Keskin, S. & Sholl, D. S. Choosing metallic–natural frameworks as enabling supplies in mixed-matrix membranes for high-efficiency pure gasoline purification. Power Environ. Sci. 3, 343–351 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Ranjan, R. & Tsapatsis, M. Microporous metallic–natural framework membrane on porous help utilizing the seeded development methodology. Chem. Mater. 21, 4920–4924 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Brown, A. J. et al. Interfacial microfluidic processing of metallic–natural framework hole fiber membranes. Science 345, 72–75 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Kwon, H. Y. & Jeong, H.-Ok. In situ synthesis of skinny zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally excessive propylene/propane separation. J. Am. Chem. Soc. 135, 10763–10768 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Hu, Y. et al. Steel–natural framework membranes fabricated by way of reactive seeding. Chem. Commun. 47, 737–739 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Y. et al. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates. J. Am. Chem. Soc. 136, 14353–14356 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Pan, Y., Tao, L., Lestari, G. & Lai, Z. Efficient separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 390391, 93–98 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, S. et al. Electrochemical synthesis of steady metallic–natural framework membranes for separation of hydrocarbons. Nat. Power 6, 882–891 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Knebel, A. et al. Answer processable metallic–natural frameworks for mixed-matrix membranes utilizing porous liquids. Nat. Mater. 19, 1346–1353 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ma, X. et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 361, 1008–1011 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Al-Maythalony, B. A. et al. Quest for anionic MOF membranes: steady sod-ZMOF membrane with CO2 adsorption-driven selectivity. J. Am. Chem. Soc. 137, 1754–1757 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Seoane, B. et al. Steel–natural framework based mostly mixed-matrix membranes: an answer for extremely environment friendly CO2 seize? Chem. Soc. Rev. 44, 2421–2454 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Cussler, E. L. Membranes containing selective flakes. J. Membr. Sci. 52, 275–288 (1990).

    CAS 
    Article 

    Google Scholar
     

  • Peng, Y. et al. Steel–natural framework nanosheets as constructing blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Rodenas, T. et al. Steel–natural framework nanosheets in polymer composite supplies for gasoline separation. Nat. Mater. 14, 48–55 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Ding, S.-Y. et al. Building of covalent natural framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling response. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Fan, H. W. et al. Covalent natural framework–covalent natural framework bilayer membranes for extremely selective gasoline separation. J. Am. Chem. Soc. 140, 10094–10098 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Knebel, A. et al. Defibrillation of soppy porous metallic–natural frameworks with electrical fields. Science 358, 347–351 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Z. et al. Tunable molecular separation by nanoporous membranes. Nat. Commun. 7, 13872 (2016).

    CAS 
    Article 

    Google Scholar
     

  • He, G. et al. Electrophoretic nuclei meeting for crystallization of high-performance membranes on unmodified helps. Adv. Funct. Mater. 28, 1707427 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, S. et al. Paralyzed membrane: current-driven synthesis of a metallic–natural framework with sharpened propene/propane separation. Sci. Adv. 4, eaau1393 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Hou, Q. et al. Extremely-tuning of the aperture dimension in stiffened ZIF-8_Cm frameworks with mixed-linker technique for enhanced CO2/CH4 separation. Angew. Chem. Int. Ed. 58, 327–331 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. A MOF glass membrane for gasoline separation. Angew. Chem. Int. Ed. 59, 4365–4369 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Miao, Y. et al. Electron beam induced modification of ZIF-8 membrane permeation properties. Chem. Commun. 57, 5250–5253 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, M. et al. A extremely selective supramolecule array membrane product of zero dimensional molecules for gasoline separation. Angew. Chem. Int. Ed. 60, 20977–20983 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Lee, M. J., Kwon, H. T. & Jeong, H.-Ok. Defect-dependent stability of extremely propylene-selective zeolitic-imidazolate framework ZIF-8 membranes. J. Membr. Sci. 259, 105–113 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kwon, H. T. et al. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 137, 12304–12311 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, X. et al. Electrochemically assisted interfacial development of MOF membranes. Matter 1, 1285–1292 (2019).

    Article 

    Google Scholar
     

  • Shu, L. et al. Versatile soft-solid metallic–natural framework composite membranes for H2/CO2 separation. Angew. Chem. Int. Ed. 61, e202117577 (2022).

    CAS 

    Google Scholar
     

  • Van Assche, T. R. C. et al. Electrochemical synthesis of skinny HKUST-1 layers on copper mesh. Microporous Mesoporous Mater. 158, 209–213 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Müller, Ok. et al. Defects as shade facilities: the obvious shade of metallic–natural frameworks containing Cu2+-based paddle-wheel models. ACS Appl. Mater. Interfaces 9, 37463–37467 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nan, J., Dong, X., Wang, W. & Jin, W. Formation mechanism of metallic–natural framework membranes derived from reactive seeding strategy. Microporous Mesoporous Mater. 155, 90–98 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Knebel, A. et al. Comparative examine of MIL-96(Al) as steady metallic–natural frameworks layer and mixed-matrix membrane. ACS Appl. Mater. Interfaces 8, 7536–7544 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Knebel, A. et al. Hierarchical nanostructures of metallic–natural frameworks utilized in gasoline separating ZIF-8-on-ZIF-67 membranes. Chem. Eur. J. 24, 5728–5733 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Hurrle, S. et al. Sprayable, large-area metallic–natural framework movies and membranes of various thickness. Chem. Eur. J. 23, 2233–2475 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Electrochemical deposition of metallic–natural framework movies and their functions. J. Mater. Chem. A 8, 7569–7587 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Eum, Ok. et al. ZIF-8 membranes by way of interfacial microfluidic processing in polymeric hole fibers: environment friendly propylene separation at elevated pressures. ACS Appl. Mater. Interfaces 8, 25337–25342 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Eum, Ok. et al. ZIF-8 membrane separation efficiency tuning by vapor part ligand therapy. Angew. Chem. Int. Ed. 58, 16390–16394 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Bisbey, R. P., DeBlase, C. R., Smith, B. J. & Dichtel, W. R. Two-dimensional covalent natural framework skinny movies grown in move. J. Am. Chem. Soc. 138, 11433–11436 (2016).

    CAS 
    Article 

    Google Scholar
     

  • He, G., Zhang, R. & Jiang, Z. Engineering covalent natural framework membranes. Acc. Mater. Res. 2, 630–643 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Geng, Ok. et al. Covalent natural frameworks: design, synthesis and capabilities. Chem. Rev. 120, 8814–8933 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Haase, F. & Lotsch, B. V. Fixing the trilemma: in the direction of crystalline, secure and practical covalent natural frameworks. Chem. Soc. Rev. 49, 8469–8500 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ma, X. & Scott, T. F. Approaches and challenges within the synthesis of three-dimensional covalent-organic frameworks. Commun. Chem. 1, 98 (2018).

    Article 

    Google Scholar
     

  • Lu, H. et al. A novel 3D covalent natural framework membrane grown on a porous α-Al2O3 substrate below solvothermal circumstances. Chem. Commun. 51, 15562–15565 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Segura, J. L., Mancheno, M. J. & Zamora, F. Covalent natural frameworks based mostly on Schiff-base chemistry: synthesis, properties and potential functions. Chem. Soc. Rev. 45, 5635–5671 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Ma, T. et al. Single-crystal X-ray diffraction buildings of covalent natural frameworks. Science 361, 48–52 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Li, X. et al. Facile transformation of imine covalent natural frameworks into ultrastable crystalline porous fragrant frameworks. Nat. Commun. 9, 2998 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shan, M. et al. Azine-linked covalent natural framework (COF)-based mixed-matrix membranes for CO2/CH4 separation. Chem. Eur. J. 22, 14467–14470 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Liu, J. et al. Self-standing and versatile covalent natural framework (COF) membranes for molecular separation. Sci. Adv. 6, eabb1110 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kandambeth, S. et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29, 1603945 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Castano, I. et al. Chemical management over nucleation and anisotropic development of two-dimensional covalent natural frameworks. ACS Cent. Sci. 5, 1892–1899 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Auras, F. et al. Synchronized offset stacking: an idea for rising large-domain and extremely crystalline 2D covalent natural frameworks. J. Am. Chem. Soc. 138, 16703–16710 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Li, Y. Laminated self-standing covalent natural framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nat. Commun. 11, 599 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tong, M. et al. Few-layered ultrathin covalent natural framework membranes for gasoline separation: a computational examine. J. Mater. Chem. A 4, 124–131 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Ying, Y. et al. Ultrathin two-dimensional membranes assembled by ionic covalent natural nanosheets with decreased apertures for gasoline separation. J. Am. Chem. Soc. 142, 4472–4480 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, P. et al. Single-phase covalent natural framework staggered stacking nanosheet membrane for CO2-selective separation. Angew. Chem. Int. Ed. 60, 19047–19052 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Fan, H. et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12, 38 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Fan, H. et al. Excessive-flux vertically aligned 2D covalent natural framework membrane with enhanced hydrogen separation. J. Am. Chem. Soc. 142, 6872–6877 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Fenton, J. L. et al. Polycrystalline covalent natural framework movies act as adsorbents, not membranes. J. Am. Chem. Soc. 143, 1466–1473 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Fan, H. et al. Excessive-flux membranes based mostly on the covalent natural framework COF-LZU1 for selective dye separation by nanofiltration. Angew. Chem. Int. Ed. 57, 4083–4087 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Bon, V. et al. Huge strain amplification by stimulated contraction of mesoporous frameworks. Angew. Chem. Int. Ed. 133, 11841–11845 (2021).

    Article 

    Google Scholar
     

  • Krause, S. et al. A pressure-amplifying framework materials with unfavorable gasoline adsorption transitions. Nature 532, 348–352 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Moggach, S. A., Bennett, T. D. & Cheetham, A. Ok. The impact of strain on ZIF-8: growing pore dimension with strain and the formation of a high-pressure part at 1.47 GPa. Angew. Chem. Int. Ed. 48, 7087–7089 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Ryder, M. R. et al. Figuring out the position of terahertz vibrations in metallic–natural frameworks: from gate-opening phenomenon to shear-driven structural destabilization. Phys. Rev. Lett. 113, 215502 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Peralta, D. et al. The separation of xylene isomers by ZIF-8: an illustration of the extraordinary flexibility of the ZIF-8 framework. Microporous Mesoporous Mater. 173, 1–5 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Iacomi, P. & Maurin, G. ResponZIF buildings: zeolitic imidazolate frameworks as stimuli-responsive supplies. ACS Appl. Mater. Interfaces 13, 50602–50642 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ghoufi, A., Benhamed, Ok., Boukli-Hacene, L. & Maurin, G. Electrically induced respiratory of the MIL- 53(Cr) metallic–natural framework. ACS Cent. Sci. 3, 394–398 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Lyu, L. et al. C3H6/C3H8 adsorption habits examine of stiffened ZIF-8 ready below an electrical discipline. Chem. Ing. Tech. 94, 119–127 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Bennett, T. D. et al. Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). Chem. Commun. 47, 7983–7985 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, C. et al. Steel–natural framework glasses with everlasting accessible porosity. Nat. Commun. 9, 5042 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nozari, V. et al. Ionic liquid facilitated melting of the metallic–natural framework ZIF-8. Nat. Commun. 12, 5703 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Frentzel-Beyme, L. et al. Porous purple glass—a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework. J. Mater. Chem. A 7, 985–990 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Knebel, A. et al. Azobenzene visitor molecules as light-switchable CO2 valves in an ultrathin UiO-67 membrane. Chem. Mater. 29, 3111–3117 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Brandon, J., Furlong, B. J. & Katz, M. J. Bistable dithienylethene-based metallic–natural framework illustrating optically induced modifications in chemical separations. J. Am. Chem. Soc. 139, 13280–13283 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fan, S. et al. Photogated proton conductivity of ZIF-8 membranes co-modified with graphene quantum dots and polystyrene sulfonate. Sci. China Mater. 64, 1997–2007 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Prasetya, N., Teck, A. A. & Ladewig, B. P. Matrimid-JUC-62 and Matrimid-PCN-250 mixed-matrix membranes displaying light-responsive gasoline separation and useful ageing traits for CO2/N2 separation. Sci. Rep. 8, 2944 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Koros, W. & Zhang, C. Supplies for next-generation molecularly selective artificial membranes. Nat. Mater. 16, 289–297 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Seoane, B. et al. Steel–natural framework based mostly mixed-matrix membranes: an answer for extremely environment friendly CO2 seize? Chem. Soc. Rev. 44, 2421–2454 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Etxeberria-Benavides, M. et al. Excessive efficiency mixed-matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. J. Membr. Sci. 550, 198–207 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Schneider, D., Kapteijn, F. & Valiullin, R. Transport properties of mixed-matrix membranes: a kinetic Monte Carlo examine. Phys. Rev. Appl. 12, 044034 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Diestel, L. et al. Matrimid-based mixed-matrix membranes: interpretation and correlation of experimental findings for zeolitic imidazolate frameworks as fillers in H2/CO2 separation. Ind. Eng. Chem. Res. 54, 1103–1112 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Friebe, S. et al. NH2-MIL-125 as membrane for carbon dioxide sequestration: skinny supported MOF layers contra mixed-matrix-membranes. J. Membr. Sci. 516, 185–193 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Hossain, I. et al. Cross-linked mixed-matrix membranes utilizing functionalized UiO-66-NH2 into PEG/PPG–PDMS-based rubbery polymer for environment friendly CO2 separation. ACS Appl. Mater. Interfaces 12, 57916–57931 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Z. et al. Graphene-like MOF nanosheets stabilize graphene oxide membranes enabling selective molecular sieving. J. Membr. Sci. 633, 119397 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kumar, P. et al. One-dimensional intergrowth in two-dimensional zeolite nanosheets and their impact on ultra-selective transport. Nat. Mater. 19, 443–449 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Dakhchoune, M. et al. Fuel-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat. Mater. 20, 362–369 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wu, S. et al. Excessive-throughput droplet microfluidic synthesis of hierarchical metallic–natural framework nanosheet microcapsules. Nano Res. 12, 2736–2742 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Sabetghadam, A. et al. Skinny mixed-matrix and dual-layer membranes containing metallic–natural framework nanosheets and PolyactiveTM for CO2 seize. J. Membr. Sci. 570–571, 226–235 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Caro, J. & Kärger, J. From laptop design to gasoline separation. Nat. Mater. 19, 374–375 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Sabetghadam, A. et al. Steel–natural framework crystals in mixed-matrix membranes: affect of the filler morphology on the gasoline separation efficiency. Adv. Funct. Mat. 26, 3154–3163 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Pustovarenko, A. et al. Nanosheets of nonlayered aluminum metallic–natural frameworks by means of a surfactant-assisted methodology. Adv. Mater. 30, 1707234 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zou, C. et al. Mechanical synthesis of COF nanosheet cluster and its mixed-matrix membrane for environment friendly CO2 removing. ACS Appl. Mater. Interfaces 9, 29093–29100 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Chen, Y. et al. Blended-matrix membranes containing MOF@COF hybrid fillers for environment friendly CO2/CH4 separation. J. Membr. Sci. 573, 97–106 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ryder, M. R. et al. Detecting molecular rotational dynamics complementing the low-frequency terahertz vibrations in a zirconium-based metallic–natural framework. Phys. Rev. Lett. 118, 255502 (2017).

    Article 

    Google Scholar
     

  • Jayachandrababu, Ok. C. et al. Construction elucidation of mixed-linker zeolitic imidazolate frameworks by solid-state 1H CRAMPS NMR spectroscopy and computational modeling. J. Am. Chem. Soc. 138, 7325–7336 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Hao, J. et al. Mechanistic examine on thermally induced lattice stiffening of ZIF-8. Chem. Mater. 33, 4035–4044 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Evans, J. D. et al. Feasibility of mixed-matrix membrane gasoline separations using porous natural cages. J. Phys. Chem. C 118, 1523–1529 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Tozawa, T. et al. Porous natural cages. Nat. Mater. 8, 973–978 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Liu, X. et al. Molecular-scale hybrid membranes derived from metallic–natural polyhedra for gasoline separation. ACS Appl. Mater. Interfaces 10, 21381–21389 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Krishna, R. Diffusion in porous crystalline supplies. Chem. Soc. Rev. 41, 3099–3118 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Keskin, S. & Scholl, D. S. Screening metallic−natural framework supplies for membrane-based methane/carbon dioxide separations. J. Phys. Chem. C 111, 14055–14059 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Altintas, C. et al. Pc simulations of 4240 MOF membranes for H2/CH4 separations: insights into construction–efficiency relations. J. Mater. Chem. A 6, 5836–5847 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Altundal, O. F., Altintas, C. & Keskin, S. Can COFs change MOFs in flue gasoline separation? Excessive-throughput computational screening of COFs for CO2/N2 separation. J. Mater. Chem. A 8, 14609–14623 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Shen, J., Liu, G., Han, Y. & Jin, W. Synthetic channels for confined mass transport on the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Babu, D. J. et al. Proscribing lattice flexibility in polycrystalline metallic–natural framework membranes for carbon seize. Adv. Mat. 31, 1900855 (2019).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular